Effect of Wafer Bow and Etch Patterns in Direct Wafer Bonding

نویسندگان

  • K. T. Turner
  • S. M. Spearing
چکیده

Direct wafer bonding has been identified as an enabling technology for microelectromechanical systems (MEMS). As the complexity of devices increase and the bonding of multiple patterned wafers is required, there is a need to understand the factors that lead to bonding failure. Bonding relies on shortranged surface forces, thus flatness deviations of the wafers may prevent bonding. Bonding success is determined by whether or not the surface forces are sufficient to overcome the flatness deviations and deform the wafers to a common shape. A general bonding criterion based on this fact is developed by comparing the strain energy required to deform the wafers to the surface energy that is dissipated as the bond is formed. The bonding criterion is used to examine the case of bonding bowed wafers with etch patterns on the bonding surface. An analytical expression for the bonding criterion is developed using plate theory for the case of bowed wafers. Then, the criterion is implemented using finite element analysis, to demonstrate its use and to validate the analytical model. The results indicate that wafer thickness and curvature are important in determining bonding success and that the bonding criterion is independent of wafer diameter. Results also demonstrate that shallow etched patterns can make bonding more difficult while deep features, which penetrate through an appreciable thickness of the wafer, may facilitate bonding. Design implications of the model results are discussed in detail. Preliminary results from experiments designed to validate the model, agree with the trends seen in the model, but further work is required to achieve quantitative correlation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wafer Bonding : Mechanics - Based Models and Experiments

Direct wafer bonding has emerged as an important technology in the manufacture of silicon-on-insulator substrates (SOI), microelectromechanical systems (MEMS), and three-dimensional inte-grated circuits (3D IC’s). While the process is currently employed in applications such as these, alack of knowledge of the basic mechanics of the process has made developing robust processes an...

متن کامل

VERY DEEP TRENCHES IN SILICON WAFER USING DRIE METHOD WITH ALUMINUM MASK

Abstract: In this paper, a DRIE process for fabricating MEMS silicon trenches with a depth of more than 250 m is described. The DRIE was produced in oxygen-added sulfur hexafluoride (SF6) plasma, with sample cooling to cryogenic temperature using a Plasmalab System 100 ICP 180 at different RF powers. A series of experiments were performed to determine the etch rate and selectivity of the some m...

متن کامل

Direct wafer bonding for MEMS and microelectronics

Direct wafer bonding is a method for fabricating advanced substrates for microelectromechanical systems (MEMS) and integrated circuits (IC). The most typical example of such an advanced substrate is the silicon-on-insulator (SOI) wafer. SOI wafers offer many advantages over conventional silicon wafers. In IC technology, the switching speed of circuits fabricated on SOI is increased by 20-50% co...

متن کامل

Characterization of the DRIE Process for ETWI for Piezoresistive Inertial Sensors

Electrical through-wafer interconnects (ETWI) are often integrated with inertial sensors for harsh liquid environment applications. Devices with metal interconnects are very susceptible to corrosion in aquatic environments. An alternative approach is to form highly doped, conductive polysilicon through the wafer from the back side (unexposed to harsh environments) to the front side of the devic...

متن کامل

An Investigation on Two Types of Crystalline Micro-diamond Film Coated Tools Lapping with Sapphire Wafer

Two types of micron-diamond films were prepared on YG6 substrate by hot filament chemical vapor deposition(HFCVD) method. Morphology and orientation of crystalline growth were evaluated by SEM and XRD. Diamond film coated tools and sapphire wafer’ surface before and after lapping experiment  were contrasted. The results indicated that a significant change in Raman spectrum of two types of micro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002